p-Steinberg Characters of Finite Simple Groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$

‎‎Here we construct and count all ordinary irreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$.

متن کامل

irreducible characters of sylow $p$-subgroups of the steinberg triality groups ${}^3d_4(p^{3m})$

‎‎here we construct and count all ordinary irreducible characters of sylow $p$-subgroups of the steinberg triality groups ${}^3d_4(p^{3m})$.

متن کامل

On the characters of pro-p groups of finite rank

The proof of this theorem is based on the correspondence between the characters of a uniform pro-p group and the orbits of the action of the group on the dual of its Lie algebra. This result is an analogue of the Kirillov theory, introduced first in the context of nilpotent Lie groups and then used in many other situations (see [7]). The correspondence is quite explicit and it also gives the ex...

متن کامل

UNIPOTENT ALMOST CHARACTERS OF SIMPLE p-ADIC GROUPS, II

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

متن کامل

Characters of Finite Abelian Groups

Example 1.2. The trivial character of G is the homomorphism 1G defined by 1G(g) = 1 for all g ∈ G. Example 1.3. Let G be cyclic of order 4 with generator γ. Since γ4 = 1, a character χ of G has χ(γ)4 = 1, so χ takes only four possible values at γ, namely 1, −1, i, or −i. Once χ(γ) is known, the value of χ elsewhere is determined by multiplicativity: χ(γj) = χ(γ)j . So we get four characters, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1997

ISSN: 0021-8693

DOI: 10.1006/jabr.1997.6791